Search results

1 – 3 of 3
Article
Publication date: 10 April 2019

Yazid Statra, Hocine Menana, Lamia Belguerras and Bruno Douine

The purpose of this paper is to develop a rapid and realistic modelling approach for the design and characterization of high temperature superconducting (HTS) coils and windings…

Abstract

Purpose

The purpose of this paper is to develop a rapid and realistic modelling approach for the design and characterization of high temperature superconducting (HTS) coils and windings carrying DC currents. Indeed, the strong dependence of the electromagnetic properties of such materials on the magnetic field makes the design and characterization of HTS systems a delicate operation where local quantities have to be evaluated.

Design/methodology/approach

A volume integral modelling approach has been developed taking into account the electric nonlinearity of the HTS material which is represented by power law. The variations of the characteristic quantities of the HTS (critical current density and power law exponent) with the magnetic flux density are also taken into account by using Kim’s law. The volume integral modelling allows to model only the active parts of the system and thus to overcome the difficulties linked to the multiscale dimensions.

Findings

The model has been tested in a case study in which simulation results were compared to measurements and to finite element analysis. A good agreement was found which validates the model as a rapid and efficient tool for HTS coils and windings design and modelling.

Practical implications

HTS coils are important elements of emerging superconducting devices which require a high level of reliability, such as generators or motors. The proposed approach is interesting to speed up the design and optimization procedures of such systems.

Originality/value

Advanced structures of the basic elements have been used in the volume integral modelling, which results in a considerable gain in computation time and in memory-space saving while keeping a high level of precision and realism of the modelling, which has been verified experimentally.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 April 2024

Boussad Moualek, Simon Chauviere, Lamia Belguerras, Smail Mezani and Thierry Lubin

The purpose of this study is to develop a magnetic resonance imaging (MRI)-safe iron-free electrical actuator for MR-guided surgical interventions.

Abstract

Purpose

The purpose of this study is to develop a magnetic resonance imaging (MRI)-safe iron-free electrical actuator for MR-guided surgical interventions.

Design/methodology/approach

The paper deals with the design of an MRI compatible electrical actuator. Three-dimensional electromagnetic and thermal analytical models have been developed to design the actuator. These models have been validated through 3D finite element (FE) computations. The analytical models have been inserted in an optimization procedure that uses genetic algorithms to find the optimal parameters of the actuator.

Findings

The analytical models are very fast and precise compared to the FE models. The computation time is 0.1 s for the electromagnetic analytical model and 3 min for the FE one. The optimized actuator does not perturb imaging sequence even if supplied with a current 10 times higher than its rated one. Indeed, the actuator’s magnetic field generated in the imaging area does not exceed 1 ppm of the B0 field generated by the MRI scanner. The actuator can perform up to 25 biopsy cycles without any risk to the actuator or the patient since he maximum temperature rise of the actuator is about 20°C. The actuator is compact and lightweight compared to its pneumatic counterpart.

Originality/value

The MRI compatible actuator uses the B0 field generated by scanner as inductor. The design procedure uses magneto-thermal coupled models that can be adapted to the design of a variety actuation systems working in MRI environment.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 March 2022

Simon Chauviere, Lamia Belguerras, Thierry Lubin and Smail Mezani

The purpose of this paper is the design study and realisation of portable low-field open MRI system.

Abstract

Purpose

The purpose of this paper is the design study and realisation of portable low-field open MRI system.

Design/methodology/approach

The design of the magnetic resonance imaging (MRI) system is based on an optimization study using a genetic algorithm. Non-linear two-dimensional and three-dimensional numerical electromagnetic models are developed and inserted in the optimization environment.

Findings

The results are found to be consistent with those issued from fully experimental tests. The static field produced by the device is 0.295 T with a homogeneity of 2.8% (28,000 ppm) over 100 mm diameter sphere volume. The z-axis gradient coils are capable of generating switching gradients with an amplitude of 8 mT/m and a frequency of 1.2 kHz.

Originality/value

Our system is an open portable MRI which can be used in an ambulance. The open topology permits an easy access into the lateral sides when a surgery using surgical instrument with video feedback is needed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 3 of 3